close
標題:
amaths
發問:
http://s55.photobucket.com/albums/g155/kwy_candy/?action=view¤t=-1-2.jpg 請幫我解答下以上這網的兩題題目,thz
最佳解答:
其他解答:
amaths
發問:
http://s55.photobucket.com/albums/g155/kwy_candy/?action=view¤t=-1-2.jpg 請幫我解答下以上這網的兩題題目,thz
最佳解答:
此文章來自奇摩知識+如有不便請留言告知
1.設S(n)為以下命題: ‘22+42+62+...+(2n)2 = 2/3 n(n+1)(2n+1)’ 當n = 1時, L.H.S. = [2(1)]2 = 4 R.H.S. = 2/3 1(1+1)[2(1)+1] = 12/3 = 4 ∴L.H.S. = R.H.S. ∴S(1)成立 假設S(k)成立, 即22+42+62+...+(2k)2 = 2/3 k(k+1)(2k+1) 當n = k+1時, L.H.S. = 22+42+62+...+(2k)2 + [2(k+1)]2 = 2/3 k(k+1)(2k+1) + [2(k+1)]2 = 2/3 (k+1)[k(2k+1)+6(k+1)] = 2/3 (k+1)(2k2+k+6k+6) = 2/3 (k+1)(2k2+7k+6) = 2/3 (k+1)(2k+3)(k+2) = 2/3 (k+1)[2(k+1)+1][(k+1)+1] = R.H.S. ∴S(k+1)成立 根據數學歸納法的原理,對於所有自然數n,S(n)成立 2.設S(n)為以下命題: ‘1/2x5 + 1/5x8 + 1/8x11 + ...+1/(3n﹣1)(3n+2) = n/(6n+4)’ 當n = 1時, L.H.S. = 1/[3(1)﹣1][3(1)+2] = 1/10 R.H.S. = 1/[6(1)+4]= 1/10 ∴L.H.S. = R.H.S. ∴S(1)成立 假設S(k)成立, 即1/2x5 + 1/5x8 + 1/8x11 + ...+1/(3k﹣1)(3k+2) = k/(6k+4) 當n = k+1時, L.H.S. = 1/2x5 + 1/5x8 + 1/8x11 + ...+1/(3k﹣1)(3k+2)+1/[3(k+1)﹣1][3(k+1)+2] = k/(6k+4)+1/(3k+2)(3k+5) = k/2(3k+2)+1/(3k+2)(3k+5) = [k(3k+5)+2]/2(3k+2)(3k+5) = (3k2+5k+2)/2(3k+2)(3k+5) = (3k+2)(k+1)/2(3k+2)(3k+5) = (k+1)/2(3k+5) = (k+1)/(6k+10) = (k+1)/[6(k+1)+4] = R.H.S. ∴S(k+1)成立 根據數學歸納法的原理,對於所有自然數n,S(n)成立其他解答:
文章標籤
全站熱搜
留言列表