close
標題:
a MATHS trigonometry
發問:
A MATHS trigonometry solve sin^4x-cos^4x=cosx
最佳解答:
sin4x ﹣cos4x = cosx (sin2x)2 ﹣(cos2x)2 = cosx (sin2x + cos2x)(sin2x ﹣cos2x) = cosx (1)(sin2x ﹣cos2x) = cosx sin2x ﹣cos2x = cosx (1 ﹣cos2x) ﹣cos2x = cosx 1 ﹣cos2x ﹣cos2x = cosx - 2cos2x + 1= cosx 2cos2x + cos ﹣1 = 0 (2cosx ﹣1)(cosx + 1) = 0 cosx = 1/2 or cosx = -1 x = 60 ,300 or 180 ∴x = 60 ,180 or 360 2008-04-10 00:49:43 補充: using the identities: a^2 - b^2 = (a - b)(a + b) 1- cos^2 x = sin^2 x
此文章來自奇摩知識+如有不便請留言告知
其他解答:
文章標籤
全站熱搜